MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. AISI 303 Stainless Steel

4004 aluminum belongs to the aluminum alloys classification, while AISI 303 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is AISI 303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4
40 to 51
Fatigue Strength, MPa 42
230 to 360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 63
430 to 470
Tensile Strength: Ultimate (UTS), MPa 110
600 to 690
Tensile Strength: Yield (Proof), MPa 60
230 to 420

Thermal Properties

Latent Heat of Fusion, J/g 540
290
Maximum Temperature: Mechanical, °C 160
930
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1070
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
240
Resilience: Unit (Modulus of Resilience), kJ/m3 25
140 to 440
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 12
21 to 25
Strength to Weight: Bending, points 20
20 to 22
Thermal Diffusivity, mm2/s 58
4.4
Thermal Shock Resistance, points 5.1
13 to 15

Alloy Composition

Aluminum (Al), % 86 to 90
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
67.3 to 74.9
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 9.0 to 10.5
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0