MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. ASTM A228 Music Wire

4004 aluminum belongs to the aluminum alloys classification, while ASTM A228 music wire belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is ASTM A228 music wire.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4
12
Fatigue Strength, MPa 42
1280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Shear Strength, MPa 63
1470
Tensile Strength: Ultimate (UTS), MPa 110
2450
Tensile Strength: Yield (Proof), MPa 60
2050

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
49
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1070
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
280
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 12
87
Strength to Weight: Bending, points 20
52
Thermal Diffusivity, mm2/s 58
13
Thermal Shock Resistance, points 5.1
79

Alloy Composition

Aluminum (Al), % 86 to 90
0
Carbon (C), % 0
0.7 to 1.0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
98 to 99
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0.2 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 10.5
0.1 to 0.3
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0