MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. AWS ERNiCrMo-3

4004 aluminum belongs to the aluminum alloys classification, while AWS ERNiCrMo-3 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is AWS ERNiCrMo-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 110
870

Thermal Properties

Latent Heat of Fusion, J/g 540
330
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 910
440
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 8.0
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1070
290

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 12
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 58
2.8
Thermal Shock Resistance, points 5.1
25

Alloy Composition

Aluminum (Al), % 86 to 90
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.8
0 to 5.0
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 10.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5