MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. EN 1.4008 Stainless Steel

4004 aluminum belongs to the aluminum alloys classification, while EN 1.4008 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4
17
Fatigue Strength, MPa 42
300
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 110
670
Tensile Strength: Yield (Proof), MPa 60
500

Thermal Properties

Latent Heat of Fusion, J/g 540
280
Maximum Temperature: Mechanical, °C 160
760
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.1
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1070
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
100
Resilience: Unit (Modulus of Resilience), kJ/m3 25
630
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 12
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 58
6.7
Thermal Shock Resistance, points 5.1
23

Alloy Composition

Aluminum (Al), % 86 to 90
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
81.8 to 86.8
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.5
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 9.0 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0