MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. EN 1.4634 Stainless Steel

4004 aluminum belongs to the aluminum alloys classification, while EN 1.4634 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is EN 1.4634 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4
21
Fatigue Strength, MPa 42
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 63
340
Tensile Strength: Ultimate (UTS), MPa 110
540
Tensile Strength: Yield (Proof), MPa 60
280

Thermal Properties

Latent Heat of Fusion, J/g 540
290
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1070
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
93
Resilience: Unit (Modulus of Resilience), kJ/m3 25
200
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 12
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 58
5.8
Thermal Shock Resistance, points 5.1
19

Alloy Composition

Aluminum (Al), % 86 to 90
0.2 to 1.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.8
74.9 to 81.8
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.3 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 9.0 to 10.5
0.2 to 1.5
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0