MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. C91600 Bronze

4004 aluminum belongs to the aluminum alloys classification, while C91600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is C91600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 2.4
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 110
310
Tensile Strength: Yield (Proof), MPa 60
160

Thermal Properties

Latent Heat of Fusion, J/g 540
190
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 600
1030
Melting Onset (Solidus), °C 560
860
Specific Heat Capacity, J/kg-K 910
370
Thermal Conductivity, W/m-K 130
71
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
10
Electrical Conductivity: Equal Weight (Specific), % IACS 120
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 8.0
3.7
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1070
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
30
Resilience: Unit (Modulus of Resilience), kJ/m3 25
120
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 12
9.9
Strength to Weight: Bending, points 20
12
Thermal Diffusivity, mm2/s 58
22
Thermal Shock Resistance, points 5.1
11

Alloy Composition

Aluminum (Al), % 86 to 90
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.25
85.9 to 89.1
Iron (Fe), % 0 to 0.8
0 to 0.2
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
1.2 to 2.0
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 9.0 to 10.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.7 to 10.8
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0 to 0.15
0