MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. ACI-ASTM CK35MN Steel

4006 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
190
Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 3.4 to 24
40
Fatigue Strength, MPa 35 to 110
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Tensile Strength: Ultimate (UTS), MPa 110 to 160
650
Tensile Strength: Yield (Proof), MPa 62 to 140
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 620
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 220
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
31
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.1
5.9
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
210
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 16
22
Strength to Weight: Bending, points 19 to 24
21
Thermal Diffusivity, mm2/s 89
3.3
Thermal Shock Resistance, points 4.9 to 7.0
14

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0 to 0.2
22 to 24
Copper (Cu), % 0 to 0.1
0 to 0.4
Iron (Fe), % 0.5 to 0.8
43.4 to 51.8
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.8 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0