MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. EN 1.4062 Stainless Steel

4006 aluminum belongs to the aluminum alloys classification, while EN 1.4062 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is EN 1.4062 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 24
23 to 34
Fatigue Strength, MPa 35 to 110
410 to 420
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 70 to 91
510
Tensile Strength: Ultimate (UTS), MPa 110 to 160
770 to 800
Tensile Strength: Yield (Proof), MPa 62 to 140
530 to 600

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 160
1030
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 620
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 220
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
170 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
690 to 910
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 16
28 to 29
Strength to Weight: Bending, points 19 to 24
24 to 25
Thermal Diffusivity, mm2/s 89
4.0
Thermal Shock Resistance, points 4.9 to 7.0
21 to 22

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
21.5 to 24
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 0.8
69.3 to 77.3
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.45
Nickel (Ni), % 0
1.0 to 2.9
Nitrogen (N), % 0
0.16 to 0.28
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.8 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0