MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. EN 1.4422 Stainless Steel

4006 aluminum belongs to the aluminum alloys classification, while EN 1.4422 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is EN 1.4422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 24
17
Fatigue Strength, MPa 35 to 110
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 70 to 91
520
Tensile Strength: Ultimate (UTS), MPa 110 to 160
850
Tensile Strength: Yield (Proof), MPa 62 to 140
630

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 160
760
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 620
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 220
16
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
11
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
130
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 16
30
Strength to Weight: Bending, points 19 to 24
25
Thermal Diffusivity, mm2/s 89
4.3
Thermal Shock Resistance, points 4.9 to 7.0
31

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.2
11 to 13
Copper (Cu), % 0 to 0.1
0.2 to 0.8
Iron (Fe), % 0.5 to 0.8
76.8 to 83.5
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.8 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0