MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. EN 1.7106 Steel

4006 aluminum belongs to the aluminum alloys classification, while EN 1.7106 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is EN 1.7106 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
200 to 500
Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 110 to 160
660 to 2020

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 620
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 220
46
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.1
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 16
24 to 73
Strength to Weight: Bending, points 19 to 24
22 to 46
Thermal Diffusivity, mm2/s 89
13
Thermal Shock Resistance, points 4.9 to 7.0
20 to 61

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0 to 0.2
0.2 to 0.45
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 0.8
95.9 to 97
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.8 to 1.2
1.6 to 2.0
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0

Comparable Variants