MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. EN AC-43200 Aluminum

Both 4006 aluminum and EN AC-43200 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
60 to 88
Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 3.4 to 24
1.1
Fatigue Strength, MPa 35 to 110
67
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 110 to 160
190 to 260
Tensile Strength: Yield (Proof), MPa 62 to 140
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 410
540
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 620
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 220
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
34
Electrical Conductivity: Equal Weight (Specific), % IACS 180
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.1
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
66 to 330
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 11 to 16
20 to 28
Strength to Weight: Bending, points 19 to 24
28 to 35
Thermal Diffusivity, mm2/s 89
59
Thermal Shock Resistance, points 4.9 to 7.0
8.8 to 12

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
86.1 to 90.8
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0.5 to 0.8
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0 to 0.010
0.2 to 0.45
Manganese (Mn), % 0 to 0.050
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0.8 to 1.2
9.0 to 11
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.050
0 to 0.35
Residuals, % 0
0 to 0.15