MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. CR015A Copper

4006 aluminum belongs to the aluminum alloys classification, while CR015A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is CR015A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 3.4 to 24
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 110 to 160
220
Tensile Strength: Yield (Proof), MPa 62 to 140
130

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 620
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 220
390
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
98
Electrical Conductivity: Equal Weight (Specific), % IACS 180
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
33
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
29
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
76
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 11 to 16
6.8
Strength to Weight: Bending, points 19 to 24
9.0
Thermal Diffusivity, mm2/s 89
110
Thermal Shock Resistance, points 4.9 to 7.0
7.8

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Bismuth (Bi), % 0
0 to 0.00050
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
99.883 to 99.939
Iron (Fe), % 0.5 to 0.8
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0
Phosphorus (P), % 0
0.0010 to 0.0070
Silicon (Si), % 0.8 to 1.2
0
Silver (Ag), % 0
0.060 to 0.080
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0