MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. SAE-AISI 1212 Steel

4006 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1212 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is SAE-AISI 1212 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
140 to 180
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 3.4 to 24
11 to 28
Fatigue Strength, MPa 35 to 110
200 to 290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 70 to 91
280 to 370
Tensile Strength: Ultimate (UTS), MPa 110 to 160
440 to 620
Tensile Strength: Yield (Proof), MPa 62 to 140
260 to 460

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 220
52
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
64 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
180 to 560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 16
15 to 22
Strength to Weight: Bending, points 19 to 24
16 to 20
Thermal Diffusivity, mm2/s 89
14
Thermal Shock Resistance, points 4.9 to 7.0
14 to 20

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 0.8
98.5 to 99.07
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0.7 to 1.0
Phosphorus (P), % 0
0.070 to 0.12
Silicon (Si), % 0.8 to 1.2
0
Sulfur (S), % 0
0.16 to 0.23
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0