MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. N06025 Nickel

4006 aluminum belongs to the aluminum alloys classification, while N06025 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 24
32
Fatigue Strength, MPa 35 to 110
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 70 to 91
500
Tensile Strength: Ultimate (UTS), MPa 110 to 160
760
Tensile Strength: Yield (Proof), MPa 62 to 140
310

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 620
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 220
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.1
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
190
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 16
26
Strength to Weight: Bending, points 19 to 24
22
Thermal Diffusivity, mm2/s 89
2.9
Thermal Shock Resistance, points 4.9 to 7.0
21

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0 to 0.2
24 to 26
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0.5 to 0.8
8.0 to 11
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 0.15
Nickel (Ni), % 0
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.8 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.050
0.010 to 0.1
Residuals, % 0 to 0.15
0