MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. N07776 Nickel

4006 aluminum belongs to the aluminum alloys classification, while N07776 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 24
39
Fatigue Strength, MPa 35 to 110
220
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
79
Shear Strength, MPa 70 to 91
470
Tensile Strength: Ultimate (UTS), MPa 110 to 160
700
Tensile Strength: Yield (Proof), MPa 62 to 140
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 160
970
Melting Completion (Liquidus), °C 640
1550
Melting Onset (Solidus), °C 620
1500
Specific Heat Capacity, J/kg-K 900
430
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
85
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.1
15
Embodied Energy, MJ/kg 150
210
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
220
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 11 to 16
22
Strength to Weight: Bending, points 19 to 24
20
Thermal Shock Resistance, points 4.9 to 7.0
20

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0 to 2.0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
12 to 22
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 0.8
0 to 24.5
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.8 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0