MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. N08031 Stainless Steel

4006 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 3.4 to 24
45
Fatigue Strength, MPa 35 to 110
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 70 to 91
510
Tensile Strength: Ultimate (UTS), MPa 110 to 160
730
Tensile Strength: Yield (Proof), MPa 62 to 140
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 620
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 220
12
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
39
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.1
7.1
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1180
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
270
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 16
25
Strength to Weight: Bending, points 19 to 24
22
Thermal Diffusivity, mm2/s 89
3.1
Thermal Shock Resistance, points 4.9 to 7.0
14

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.2
26 to 28
Copper (Cu), % 0 to 0.1
1.0 to 1.4
Iron (Fe), % 0.5 to 0.8
29 to 36.9
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.8 to 1.2
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0