MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. S24000 Stainless Steel

4006 aluminum belongs to the aluminum alloys classification, while S24000 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is S24000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
210
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 24
39
Fatigue Strength, MPa 35 to 110
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 70 to 91
530
Tensile Strength: Ultimate (UTS), MPa 110 to 160
770
Tensile Strength: Yield (Proof), MPa 62 to 140
430

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 160
910
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 620
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
12
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
260
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 16
28
Strength to Weight: Bending, points 19 to 24
24
Thermal Shock Resistance, points 4.9 to 7.0
16

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.2
17 to 19
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 0.8
61.5 to 69
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
11.5 to 14.5
Nickel (Ni), % 0
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.8 to 1.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0