MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. S31803 Stainless Steel

4006 aluminum belongs to the aluminum alloys classification, while S31803 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is S31803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
260
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 24
29
Fatigue Strength, MPa 35 to 110
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 70 to 91
460
Tensile Strength: Ultimate (UTS), MPa 110 to 160
710
Tensile Strength: Yield (Proof), MPa 62 to 140
500

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 160
1060
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 620
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 220
16
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
17
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.1
3.6
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
180
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 16
25
Strength to Weight: Bending, points 19 to 24
23
Thermal Diffusivity, mm2/s 89
4.3
Thermal Shock Resistance, points 4.9 to 7.0
20

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
21 to 23
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 0.8
63.7 to 71.9
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.8 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0