MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. 6023 Aluminum

Both 4007 aluminum and 6023 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 5.1 to 23
11
Fatigue Strength, MPa 46 to 88
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 80 to 90
210 to 220
Tensile Strength: Ultimate (UTS), MPa 130 to 160
360
Tensile Strength: Yield (Proof), MPa 50 to 120
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 890
890
Thermal Conductivity, W/m-K 170
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
45
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 8.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
38 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
670 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
49
Strength to Weight: Axial, points 12 to 15
35 to 36
Strength to Weight: Bending, points 20 to 23
40
Thermal Diffusivity, mm2/s 67
67
Thermal Shock Resistance, points 5.5 to 6.7
16

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
94 to 97.7
Bismuth (Bi), % 0
0.3 to 0.8
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0.2 to 0.5
Iron (Fe), % 0.4 to 1.0
0 to 0.5
Magnesium (Mg), % 0 to 0.2
0.4 to 0.9
Manganese (Mn), % 0.8 to 1.5
0.2 to 0.6
Nickel (Ni), % 0.15 to 0.7
0
Silicon (Si), % 1.0 to 1.7
0.6 to 1.4
Tin (Sn), % 0
0.6 to 1.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.15