MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. ACI-ASTM CG8M Steel

4007 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CG8M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
180
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.1 to 23
45
Fatigue Strength, MPa 46 to 88
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 130 to 160
550
Tensile Strength: Yield (Proof), MPa 50 to 120
300

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.1
4.1
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1160
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
210
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
19
Strength to Weight: Bending, points 20 to 23
19
Thermal Diffusivity, mm2/s 67
4.3
Thermal Shock Resistance, points 5.5 to 6.7
12

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.25
18 to 21
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0.4 to 1.0
58.8 to 70
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0.15 to 0.7
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 1.7
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0