MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. AISI 310S Stainless Steel

4007 aluminum belongs to the aluminum alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.1 to 23
34 to 44
Fatigue Strength, MPa 46 to 88
250 to 280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 80 to 90
420 to 470
Tensile Strength: Ultimate (UTS), MPa 130 to 160
600 to 710
Tensile Strength: Yield (Proof), MPa 50 to 120
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.1
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1160
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
190 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
21 to 25
Strength to Weight: Bending, points 20 to 23
20 to 22
Thermal Diffusivity, mm2/s 67
4.1
Thermal Shock Resistance, points 5.5 to 6.7
14 to 16

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.25
24 to 26
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0.4 to 1.0
48.3 to 57
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Nickel (Ni), % 0.15 to 0.7
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 1.0 to 1.7
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0