MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. AISI 316Cb Stainless Steel

4007 aluminum belongs to the aluminum alloys classification, while AISI 316Cb stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is AISI 316Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.1 to 23
34
Fatigue Strength, MPa 46 to 88
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 80 to 90
390
Tensile Strength: Ultimate (UTS), MPa 130 to 160
580
Tensile Strength: Yield (Proof), MPa 50 to 120
230

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.1
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
160
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
20
Strength to Weight: Bending, points 20 to 23
20
Thermal Diffusivity, mm2/s 67
4.1
Thermal Shock Resistance, points 5.5 to 6.7
13

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.25
16 to 18
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0.4 to 1.0
60.9 to 72
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.15 to 0.7
10 to 14
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 1.0 to 1.7
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0