MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. AISI 414 Stainless Steel

4007 aluminum belongs to the aluminum alloys classification, while AISI 414 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.1 to 23
17
Fatigue Strength, MPa 46 to 88
430 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 80 to 90
550 to 590
Tensile Strength: Ultimate (UTS), MPa 130 to 160
900 to 960
Tensile Strength: Yield (Proof), MPa 50 to 120
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.1
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1160
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
1260 to 1590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
32 to 34
Strength to Weight: Bending, points 20 to 23
27 to 28
Thermal Diffusivity, mm2/s 67
6.7
Thermal Shock Resistance, points 5.5 to 6.7
33 to 35

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.050 to 0.25
11.5 to 13.5
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0.4 to 1.0
81.8 to 87.3
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Nickel (Ni), % 0.15 to 0.7
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 1.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0