MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. ASTM A182 Grade F3V

4007 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
210
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.1 to 23
20
Fatigue Strength, MPa 46 to 88
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 80 to 90
410
Tensile Strength: Ultimate (UTS), MPa 130 to 160
660
Tensile Strength: Yield (Proof), MPa 50 to 120
470

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
470
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1160
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
120
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 12 to 15
23
Strength to Weight: Bending, points 20 to 23
21
Thermal Diffusivity, mm2/s 67
10
Thermal Shock Resistance, points 5.5 to 6.7
19

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0.050 to 0.25
2.8 to 3.2
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0.4 to 1.0
94.4 to 95.7
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0.15 to 0.7
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.0 to 1.7
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0