MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. AWS E80C-Ni1

4007 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is AWS E80C-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.1 to 23
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 130 to 160
620
Tensile Strength: Yield (Proof), MPa 50 to 120
540

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1160
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
160
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 12 to 15
22
Strength to Weight: Bending, points 20 to 23
21
Thermal Diffusivity, mm2/s 67
11
Thermal Shock Resistance, points 5.5 to 6.7
18

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0.4 to 1.0
95.1 to 99.2
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0.15 to 0.7
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.0 to 1.7
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5