MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. EN 1.3520 Steel

4007 aluminum belongs to the aluminum alloys classification, while EN 1.3520 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is EN 1.3520 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
190 to 220
Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 130 to 160
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1160
54

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
22 to 26
Strength to Weight: Bending, points 20 to 23
21 to 23
Thermal Diffusivity, mm2/s 67
12
Thermal Shock Resistance, points 5.5 to 6.7
18 to 22

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0.050 to 0.25
1.4 to 1.7
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0.4 to 1.0
95.9 to 97.2
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
1.0 to 1.2
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0.15 to 0.7
0
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.0 to 1.7
0.45 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0