MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. EN 1.3963 Alloy

4007 aluminum belongs to the aluminum alloys classification, while EN 1.3963 alloy belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is EN 1.3963 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.1 to 23
29
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
72
Shear Strength, MPa 80 to 90
290
Tensile Strength: Ultimate (UTS), MPa 130 to 160
440
Tensile Strength: Yield (Proof), MPa 50 to 120
310

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 890
460
Thermal Expansion, µm/m-K 23
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.1
4.8
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1160
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 12 to 15
15
Strength to Weight: Bending, points 20 to 23
16
Thermal Shock Resistance, points 5.5 to 6.7
110

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.25
0 to 0.25
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0.4 to 1.0
60.5 to 64.9
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0.15 to 0.7
35 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.0 to 1.7
0 to 0.5
Sulfur (S), % 0
0.1 to 0.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0