MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. EN 1.4020 Stainless Steel

4007 aluminum belongs to the aluminum alloys classification, while EN 1.4020 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is EN 1.4020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
190 to 340
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.1 to 23
13 to 34
Fatigue Strength, MPa 46 to 88
340 to 540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 80 to 90
510 to 680
Tensile Strength: Ultimate (UTS), MPa 130 to 160
770 to 1130
Tensile Strength: Yield (Proof), MPa 50 to 120
430 to 950

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 590
1350
Specific Heat Capacity, J/kg-K 890
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 8.1
2.5
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
140 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
460 to 2290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
28 to 41
Strength to Weight: Bending, points 20 to 23
25 to 32
Thermal Shock Resistance, points 5.5 to 6.7
16 to 23

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.050 to 0.25
16.5 to 19
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0.4 to 1.0
62.8 to 71.8
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
11 to 14
Nickel (Ni), % 0.15 to 0.7
0.5 to 2.5
Nitrogen (N), % 0
0.2 to 0.45
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 1.0 to 1.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0