MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. EN 1.7703 Steel

4007 aluminum belongs to the aluminum alloys classification, while EN 1.7703 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.1 to 23
20
Fatigue Strength, MPa 46 to 88
320 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 80 to 90
420 to 430
Tensile Strength: Ultimate (UTS), MPa 130 to 160
670 to 690
Tensile Strength: Yield (Proof), MPa 50 to 120
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1160
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
570 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 12 to 15
24
Strength to Weight: Bending, points 20 to 23
22
Thermal Diffusivity, mm2/s 67
11
Thermal Shock Resistance, points 5.5 to 6.7
19 to 20

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0.050 to 0.25
2.0 to 2.5
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 0.4 to 1.0
94.6 to 96.4
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0.15 to 0.7
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 1.0 to 1.7
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.1
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0