MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. Grade CY40 Nickel

4007 aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.1 to 23
34
Fatigue Strength, MPa 46 to 88
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 130 to 160
540
Tensile Strength: Yield (Proof), MPa 50 to 120
220

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 590
1300
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.1
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1160
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
150
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 12 to 15
18
Strength to Weight: Bending, points 20 to 23
18
Thermal Diffusivity, mm2/s 67
3.7
Thermal Shock Resistance, points 5.5 to 6.7
16

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0.050 to 0.25
14 to 17
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0.4 to 1.0
0 to 11
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.5
Nickel (Ni), % 0.15 to 0.7
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.0 to 1.7
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0