MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. Grade CZ100 Nickel

4007 aluminum belongs to the aluminum alloys classification, while grade CZ100 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is grade CZ100 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
180
Elongation at Break, % 5.1 to 23
11
Fatigue Strength, MPa 46 to 88
68
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
69
Tensile Strength: Ultimate (UTS), MPa 130 to 160
390
Tensile Strength: Yield (Proof), MPa 50 to 120
140

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 590
1300
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 170
73
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
19
Electrical Conductivity: Equal Weight (Specific), % IACS 140
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 8.1
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1160
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
35
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
54
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 49
22
Strength to Weight: Axial, points 12 to 15
12
Strength to Weight: Bending, points 20 to 23
14
Thermal Diffusivity, mm2/s 67
19
Thermal Shock Resistance, points 5.5 to 6.7
14

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 1.0
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 1.3
Iron (Fe), % 0.4 to 1.0
0 to 3.0
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.5
Nickel (Ni), % 0.15 to 0.7
95 to 100
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.0 to 1.7
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0