MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. Sintered 6061 Aluminum

Both 4007 aluminum and sintered 6061 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 5.1 to 23
0.5 to 6.0
Fatigue Strength, MPa 46 to 88
32 to 62
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 130 to 160
83 to 210
Tensile Strength: Yield (Proof), MPa 50 to 120
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 590
610
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
200
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
52
Electrical Conductivity: Equal Weight (Specific), % IACS 140
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
28 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
51
Strength to Weight: Axial, points 12 to 15
8.6 to 21
Strength to Weight: Bending, points 20 to 23
16 to 29
Thermal Diffusivity, mm2/s 67
81
Thermal Shock Resistance, points 5.5 to 6.7
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
96 to 99.4
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0.4 to 1.0
0
Magnesium (Mg), % 0 to 0.2
0.4 to 1.2
Manganese (Mn), % 0.8 to 1.5
0
Nickel (Ni), % 0.15 to 0.7
0
Silicon (Si), % 1.0 to 1.7
0.2 to 0.8
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 1.5

Comparable Variants