MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. C31400 Bronze

4007 aluminum belongs to the aluminum alloys classification, while C31400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is C31400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.1 to 23
6.8 to 29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Shear Strength, MPa 80 to 90
180 to 240
Tensile Strength: Ultimate (UTS), MPa 130 to 160
270 to 420
Tensile Strength: Yield (Proof), MPa 50 to 120
78 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
1040
Melting Onset (Solidus), °C 590
1010
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 170
180
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
42
Electrical Conductivity: Equal Weight (Specific), % IACS 140
43

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
26 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
28 to 420
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 12 to 15
8.7 to 13
Strength to Weight: Bending, points 20 to 23
11 to 14
Thermal Diffusivity, mm2/s 67
54
Thermal Shock Resistance, points 5.5 to 6.7
9.6 to 15

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
87.5 to 90.5
Iron (Fe), % 0.4 to 1.0
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0
Nickel (Ni), % 0.15 to 0.7
0 to 0.7
Silicon (Si), % 1.0 to 1.7
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
5.8 to 11.2
Residuals, % 0
0 to 0.4