MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. C66700 Brass

4007 aluminum belongs to the aluminum alloys classification, while C66700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.1 to 23
2.0 to 58
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
41
Shear Strength, MPa 80 to 90
250 to 530
Tensile Strength: Ultimate (UTS), MPa 130 to 160
340 to 690
Tensile Strength: Yield (Proof), MPa 50 to 120
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 650
1090
Melting Onset (Solidus), °C 590
1050
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
97
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
17
Electrical Conductivity: Equal Weight (Specific), % IACS 140
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
49 to 1900
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 12 to 15
11 to 23
Strength to Weight: Bending, points 20 to 23
13 to 21
Thermal Diffusivity, mm2/s 67
30
Thermal Shock Resistance, points 5.5 to 6.7
11 to 23

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
68.5 to 71.5
Iron (Fe), % 0.4 to 1.0
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0.8 to 1.5
Nickel (Ni), % 0.15 to 0.7
0
Silicon (Si), % 1.0 to 1.7
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
26.3 to 30.7
Residuals, % 0
0 to 0.5