MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. C70700 Copper-nickel

4007 aluminum belongs to the aluminum alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
73
Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 5.1 to 23
39
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
46
Shear Strength, MPa 80 to 90
220
Tensile Strength: Ultimate (UTS), MPa 130 to 160
320
Tensile Strength: Yield (Proof), MPa 50 to 120
110

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 650
1120
Melting Onset (Solidus), °C 590
1060
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
59
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.1
3.4
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1160
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
100
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 12 to 15
10
Strength to Weight: Bending, points 20 to 23
12
Thermal Diffusivity, mm2/s 67
17
Thermal Shock Resistance, points 5.5 to 6.7
12

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
88.5 to 90.5
Iron (Fe), % 0.4 to 1.0
0 to 0.050
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 0.5
Nickel (Ni), % 0.15 to 0.7
9.5 to 10.5
Silicon (Si), % 1.0 to 1.7
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5