MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. C96300 Copper-nickel

4007 aluminum belongs to the aluminum alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
150
Elastic (Young's, Tensile) Modulus, GPa 71
130
Elongation at Break, % 5.1 to 23
11
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
49
Tensile Strength: Ultimate (UTS), MPa 130 to 160
580
Tensile Strength: Yield (Proof), MPa 50 to 120
430

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 170
240
Melting Completion (Liquidus), °C 650
1200
Melting Onset (Solidus), °C 590
1150
Specific Heat Capacity, J/kg-K 890
400
Thermal Conductivity, W/m-K 170
37
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.1
5.1
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1160
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
59
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
720
Stiffness to Weight: Axial, points 14
8.2
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 12 to 15
18
Strength to Weight: Bending, points 20 to 23
17
Thermal Diffusivity, mm2/s 67
10
Thermal Shock Resistance, points 5.5 to 6.7
20

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
72.3 to 80.8
Iron (Fe), % 0.4 to 1.0
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0.25 to 1.5
Nickel (Ni), % 0.15 to 0.7
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.0 to 1.7
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5