MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. N06007 Nickel

4007 aluminum belongs to the aluminum alloys classification, while N06007 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.1 to 23
38
Fatigue Strength, MPa 46 to 88
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Shear Strength, MPa 80 to 90
470
Tensile Strength: Ultimate (UTS), MPa 130 to 160
690
Tensile Strength: Yield (Proof), MPa 50 to 120
260

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 650
1340
Melting Onset (Solidus), °C 590
1260
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 170
10
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.1
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1160
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
200
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 12 to 15
23
Strength to Weight: Bending, points 20 to 23
21
Thermal Diffusivity, mm2/s 67
2.7
Thermal Shock Resistance, points 5.5 to 6.7
18

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.25
21 to 23.5
Cobalt (Co), % 0 to 0.050
0 to 2.5
Copper (Cu), % 0 to 0.2
1.5 to 2.5
Iron (Fe), % 0.4 to 1.0
18 to 21
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0.15 to 0.7
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 1.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0