MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. N06250 Nickel

4007 aluminum belongs to the aluminum alloys classification, while N06250 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is N06250 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.1 to 23
46
Fatigue Strength, MPa 46 to 88
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
82
Shear Strength, MPa 80 to 90
500
Tensile Strength: Ultimate (UTS), MPa 130 to 160
710
Tensile Strength: Yield (Proof), MPa 50 to 120
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1490
Melting Onset (Solidus), °C 590
1440
Specific Heat Capacity, J/kg-K 890
440
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 8.1
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
260
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 12 to 15
23
Strength to Weight: Bending, points 20 to 23
21
Thermal Shock Resistance, points 5.5 to 6.7
19

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.050 to 0.25
20 to 23
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0.25 to 1.3
Iron (Fe), % 0.4 to 1.0
7.4 to 19.4
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
10.1 to 12
Nickel (Ni), % 0.15 to 0.7
50 to 54
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.0 to 1.7
0 to 0.090
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0