MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. S32750 Stainless Steel

4007 aluminum belongs to the aluminum alloys classification, while S32750 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
270
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.1 to 23
17
Fatigue Strength, MPa 46 to 88
360
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Shear Strength, MPa 80 to 90
530
Tensile Strength: Ultimate (UTS), MPa 130 to 160
860
Tensile Strength: Yield (Proof), MPa 50 to 120
590

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.1
4.1
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
130
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
860
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
31
Strength to Weight: Bending, points 20 to 23
26
Thermal Diffusivity, mm2/s 67
4.0
Thermal Shock Resistance, points 5.5 to 6.7
25

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
24 to 26
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0.4 to 1.0
58.1 to 66.8
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0.15 to 0.7
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 1.0 to 1.7
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0