MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. S82031 Stainless Steel

4007 aluminum belongs to the aluminum alloys classification, while S82031 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.1 to 23
39
Fatigue Strength, MPa 46 to 88
490
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 80 to 90
540
Tensile Strength: Ultimate (UTS), MPa 130 to 160
780
Tensile Strength: Yield (Proof), MPa 50 to 120
570

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
280
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
28
Strength to Weight: Bending, points 20 to 23
24
Thermal Diffusivity, mm2/s 67
3.9
Thermal Shock Resistance, points 5.5 to 6.7
22

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.25
19 to 22
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 1.0
Iron (Fe), % 0.4 to 1.0
68 to 78.3
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0.15 to 0.7
2.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.24
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 1.7
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0