MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. AZ80A Magnesium

4015 aluminum belongs to the aluminum alloys classification, while AZ80A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is AZ80A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
46
Elongation at Break, % 1.1 to 23
3.9 to 8.5
Fatigue Strength, MPa 46 to 71
140 to 170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 82 to 120
160 to 190
Tensile Strength: Ultimate (UTS), MPa 130 to 220
320 to 340
Tensile Strength: Yield (Proof), MPa 50 to 200
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 420
350
Maximum Temperature: Mechanical, °C 160
130
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 600
490
Specific Heat Capacity, J/kg-K 900
990
Thermal Conductivity, W/m-K 160
77
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
59

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.1
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1160
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
12 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
500 to 600
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
69
Strength to Weight: Axial, points 13 to 22
51 to 55
Strength to Weight: Bending, points 21 to 30
60 to 63
Thermal Diffusivity, mm2/s 66
45
Thermal Shock Resistance, points 5.7 to 9.7
19 to 20

Alloy Composition

Aluminum (Al), % 94.9 to 97.9
7.8 to 9.2
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.0050
Magnesium (Mg), % 0.1 to 0.5
89 to 91.9
Manganese (Mn), % 0.6 to 1.2
0.12 to 0.5
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 1.4 to 2.2
0 to 0.1
Zinc (Zn), % 0 to 0.2
0.2 to 0.8
Residuals, % 0
0 to 0.3