MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. EN 1.7362 Steel

4015 aluminum belongs to the aluminum alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35 to 70
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 23
21 to 22
Fatigue Strength, MPa 46 to 71
140 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 82 to 120
320 to 370
Tensile Strength: Ultimate (UTS), MPa 130 to 220
510 to 600
Tensile Strength: Yield (Proof), MPa 50 to 200
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Maximum Temperature: Mechanical, °C 160
510
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1160
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
100 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 22
18 to 21
Strength to Weight: Bending, points 21 to 30
18 to 20
Thermal Diffusivity, mm2/s 66
11
Thermal Shock Resistance, points 5.7 to 9.7
14 to 17

Alloy Composition

Aluminum (Al), % 94.9 to 97.9
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.7
91.5 to 95.2
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.4 to 2.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants