MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. EN 2.4654 Nickel

4015 aluminum belongs to the aluminum alloys classification, while EN 2.4654 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is EN 2.4654 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 23
17
Fatigue Strength, MPa 46 to 71
460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 82 to 120
770
Tensile Strength: Ultimate (UTS), MPa 130 to 220
1250
Tensile Strength: Yield (Proof), MPa 50 to 200
850

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.1
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
190
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
1810
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 22
42
Strength to Weight: Bending, points 21 to 30
31
Thermal Diffusivity, mm2/s 66
3.3
Thermal Shock Resistance, points 5.7 to 9.7
37

Alloy Composition

Aluminum (Al), % 94.9 to 97.9
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 2.0
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
50.6 to 62.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 1.4 to 2.2
0 to 0.15
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
2.8 to 3.3
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0.020 to 0.080
Residuals, % 0 to 0.15
0