MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. EN AC-46600 Aluminum

Both 4015 aluminum and EN AC-46600 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35 to 70
77
Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 1.1 to 23
1.1
Fatigue Strength, MPa 46 to 71
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 130 to 220
180
Tensile Strength: Yield (Proof), MPa 50 to 200
110

Thermal Properties

Latent Heat of Fusion, J/g 420
490
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 600
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
29
Electrical Conductivity: Equal Weight (Specific), % IACS 130
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.1
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 13 to 22
18
Strength to Weight: Bending, points 21 to 30
25
Thermal Diffusivity, mm2/s 66
51
Thermal Shock Resistance, points 5.7 to 9.7
8.1

Alloy Composition

Aluminum (Al), % 94.9 to 97.9
85.6 to 92.4
Copper (Cu), % 0 to 0.2
1.5 to 2.5
Iron (Fe), % 0 to 0.7
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.1 to 0.5
0 to 0.35
Manganese (Mn), % 0.6 to 1.2
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 1.4 to 2.2
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 1.0
Residuals, % 0
0 to 0.15