MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. Grade 20 Titanium

4015 aluminum belongs to the aluminum alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 1.1 to 23
5.7 to 17
Fatigue Strength, MPa 46 to 71
550 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
47
Shear Strength, MPa 82 to 120
560 to 740
Tensile Strength: Ultimate (UTS), MPa 130 to 220
900 to 1270
Tensile Strength: Yield (Proof), MPa 50 to 200
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 160
370
Melting Completion (Liquidus), °C 640
1660
Melting Onset (Solidus), °C 600
1600
Specific Heat Capacity, J/kg-K 900
520
Thermal Expansion, µm/m-K 23
9.6

Otherwise Unclassified Properties

Density, g/cm3 2.7
5.0
Embodied Carbon, kg CO2/kg material 8.1
52
Embodied Energy, MJ/kg 150
860
Embodied Water, L/kg 1160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
2940 to 5760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
33
Strength to Weight: Axial, points 13 to 22
50 to 70
Strength to Weight: Bending, points 21 to 30
41 to 52
Thermal Shock Resistance, points 5.7 to 9.7
55 to 77

Alloy Composition

Aluminum (Al), % 94.9 to 97.9
3.0 to 4.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 0.7
0 to 0.3
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 1.4 to 2.2
0
Titanium (Ti), % 0
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants