MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. N09777 Nickel

4015 aluminum belongs to the aluminum alloys classification, while N09777 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 23
39
Fatigue Strength, MPa 46 to 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 82 to 120
400
Tensile Strength: Ultimate (UTS), MPa 130 to 220
580
Tensile Strength: Yield (Proof), MPa 50 to 200
240

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 160
960
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.1
7.4
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1160
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
180
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 13 to 22
20
Strength to Weight: Bending, points 21 to 30
19
Thermal Shock Resistance, points 5.7 to 9.7
16

Alloy Composition

Aluminum (Al), % 94.9 to 97.9
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 19
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
28.5 to 47.5
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.4 to 2.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0