MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. S35125 Stainless Steel

4015 aluminum belongs to the aluminum alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 23
39
Fatigue Strength, MPa 46 to 71
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 82 to 120
370
Tensile Strength: Ultimate (UTS), MPa 130 to 220
540
Tensile Strength: Yield (Proof), MPa 50 to 200
230

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.1
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1160
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
170
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 13 to 22
19
Strength to Weight: Bending, points 21 to 30
18
Thermal Diffusivity, mm2/s 66
3.1
Thermal Shock Resistance, points 5.7 to 9.7
12

Alloy Composition

Aluminum (Al), % 94.9 to 97.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
36.2 to 45.8
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 1.4 to 2.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0