MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. S41425 Stainless Steel

4015 aluminum belongs to the aluminum alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35 to 70
280
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 23
17
Fatigue Strength, MPa 46 to 71
450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 82 to 120
570
Tensile Strength: Ultimate (UTS), MPa 130 to 220
920
Tensile Strength: Yield (Proof), MPa 50 to 200
750

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 160
810
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.9
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1160
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
150
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
1420
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 22
33
Strength to Weight: Bending, points 21 to 30
27
Thermal Diffusivity, mm2/s 66
4.4
Thermal Shock Resistance, points 5.7 to 9.7
33

Alloy Composition

Aluminum (Al), % 94.9 to 97.9
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.7
74 to 81.9
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.4 to 2.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0