MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. 7050 Aluminum

Both 4032 aluminum and 7050 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 6.7
2.2 to 12
Fatigue Strength, MPa 110
130 to 210
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
26
Shear Strength, MPa 260
280 to 330
Tensile Strength: Ultimate (UTS), MPa 390
490 to 570
Tensile Strength: Yield (Proof), MPa 320
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 570
370
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 570
630
Melting Onset (Solidus), °C 530
490
Specific Heat Capacity, J/kg-K 900
860
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
35
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 700
1110 to 1760
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
45
Strength to Weight: Axial, points 41
45 to 51
Strength to Weight: Bending, points 45
45 to 50
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 20
21 to 25

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
87.3 to 92.1
Chromium (Cr), % 0 to 0.1
0 to 0.040
Copper (Cu), % 0.5 to 1.3
2.0 to 2.6
Iron (Fe), % 0 to 1.0
0 to 0.15
Magnesium (Mg), % 0.8 to 1.3
1.9 to 2.6
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0.5 to 1.3
0
Silicon (Si), % 11 to 13.5
0 to 0.12
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0 to 0.25
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15