MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. ASTM A387 Grade 11 Steel

4032 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 11 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is ASTM A387 grade 11 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.7
25
Fatigue Strength, MPa 110
200 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 260
320 to 390
Tensile Strength: Ultimate (UTS), MPa 390
500 to 600
Tensile Strength: Yield (Proof), MPa 320
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 570
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1030
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
100 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 700
200 to 320
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 41
18 to 21
Strength to Weight: Bending, points 45
18 to 20
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 20
15 to 18

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0 to 0.1
1.0 to 1.5
Copper (Cu), % 0.5 to 1.3
0
Iron (Fe), % 0 to 1.0
96.2 to 97.6
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0.5 to 1.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13.5
0.5 to 0.8
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0